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This work addresses nucleation rates in systems with strong initial recombination. (mitigjeminate”)
recombination is a process where a dissociated stru¢amien, vortex, kink, etg.recombines with its twin
brother(cation, antivortex, antikinkgenerated in the same nucleation event. Initial recombination is important
if there is an asymptotically vanishing interaction force instead of a generic saddle-type activation barrier. At
low temperatures, initial recombination strongly dominates homogeneous recombination. In a first part, we
discuss the effect in one-, two-, and three-dimensional diffusion controlled systems with spherical symmetry.
Since there is no well-defined saddle, we introduce a threshold which is to some extent arbitrary but which is
restricted by physically reasonable conditions. We show that the dependence of the nucleation rate on the
specific choice of this threshold is strongest for one-dimensional systems and decreases in higher dimensions.
We also discuss the influence of a weak driving force, and show that the transport current is directly deter-
mined by the imbalance of the activation rate in the direction of the field and the rate against this direction. In
a second part, we apply the results to the overdamped sine-Gordon system at equilibrium. It turns out that
diffusive initial recombination is the essential mechanism which governs the equilibrium kink nucleation rate.
We emphasize analogies between the single particle problem with initial recombination and the multidimen-
sional kink-antikink nucleation problemiS1063-651X98)10008-9

PACS numbgs): 05.40+j, 82.60.Nh, 72.20.Jv, 11.10.Kk

[. INTRODUCTION mann constant, and the temperature, respectively. The nucle-
ation rate is then proportional to the Arrhenius factor. The
The purpose of this work is to support our approach to thgproportionality constant is in the center of interest in many
nucleation problem of kinks and anti-kinks in the over- works, and depends strongly on the shape of the potential
damped sine-Gordon chain at equilibrijd] by investigat- and on the strength of the damping of the Brownian particle.
ing closely related problems which are dominated by initial
(or “geminate”) recombination processes. Initial recombina- a) b)
tion is a process where a dissociated structargon, vortex, U U
kink, etc) recombines with its twin brothdication, antivor-
tex, antikink generated in the same nucleation eVight6).
Our theory of kink-antikink nucleatiofil] leads in the ther-
mal equilibrium state of the sine-Gordon chain to an activa-
tion rate proportional to exp(2E,/kT), with an activation
energy of twice the equilibrium kink enerdg. This can be
compared with earlier work7] which predicts a rate propor-
tional to exp(3E,/KT). This significant difference in the
nucleation rates is a consequence of initial recombination of
kink-antikink pairs. Although our discussion presents a clear

physical picture, our results are apparently not obvious and c) d) r‘(\j

have already given rise to discussions in the literai8t€]. ® ®

It is therefore necessary to further support and explain more «—L—p

deeply the point of view and the approach taken in REf. hr § ir
Usually, nucleation theory10] (for reviews, see Refs.

[11,12)) is associated with the decay of a metastable state —>i 2S¢ _N2§a‘_

across an activation barrier. A simple picture is a Brownian @ ®

particle which has to overcome a barrier in order to leave the

region of attraction of a potential welbee Fig. 18)]. One of FIG. 1. (a) Potential well with an activation barrier ats and

the main tasks of nucleation theory is the evaluation of theyith an activation energf,. (b) Potential well without a barrier

current flow out of the well for a given density of particles in maximum, but with a flat region; this case has to be treated by

the well. The relevant time scale of such an activated procesgtroducing a threshold poirg (c) Lattice of potential wells with

is dominated by an inverse Arrhenius factor expkT), distanceL. (d) Typical traces of initial recombinatioir) and ho-

whereE,, k, and T denote the activation energy, the Boltz- mogeneous recombinatidghr).
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In the present work we emphasize the particularly interesting4]. We mention that there is no simple single-particle pic-
problem of nucleation and recombination in systems with ariure of the Kosterlitz-Thouless transition, since screening of
asymptotically “flat saddle”[see Fig. 1b)]. We will con-  the excitations play a major role.
sider activation out of a well onto a region where the poten- Initial recombination in one-dimensional systems is faced,
tial converges fast to a constant value, without crossing &.9-, in photoelectric carrier generation in 1D semiconduct-
barrier with a maximum. Except for a few remarks on theing polymers[5]. Haberkorn and Michel-Beyerl#] consid-
underdamped limit, we will restrict ourselves to strongly ered electrons which are photogenerated close to an electrode
damped systems. This corresponds to a diffusion in configul @ one-dimensional conductor, including the image force at
ration space on the flat saddle region. Furthermore we wilf€ €lectrode. In particular, they discussed the relation be-
allow a very slow drift due to a weak external driving force. tween the total current due_ to a weak external force, and the
The main difference from the usual nucleation across anucléated” current. We will take up these results below,

saddle with a well-defined maximum consists in an enhanced NOte that the listed examples are all controlled by an in-
probability of backscattering into the well. Indeed, while teraction force rather than by diffusion alone. In this paper,

there the particle is driven away by the deterministic forcel®Wever, we emphasize diffusion controlled, i.e., entropy

once the barrier maximum is traversed, the particle on a fagriven, initial recombination. This requires that the force be

saddle executes a diffusive motion leading to a large probShOrt ranged. Short- range forces occur, e.g., between kinks
ability of falling back into the original well. This process ©F domain walls in(quasi) one-dimensional systems. A
corresponds to initial recombination in generation-k'”k'am'k'nk interaction potential is often a monotonously

recombination kinetics and is in contrast to homogeneoudcréasing function of the separation, and becomes exponen-
recombination. The homogeneous recombination rate is prdi@ly flat for large separationgl4]. ,
portional to the density of wells, and is much smaller than '€ Paper is organized as follows. In order to fix the

the rate of initial recombination for a diluted well density. Ntation and for later comparison, in Sec. Il we briefly re-
The processes are illustrated in the lower part of Fig. 1. view some standard results of the theory of nucleation across

In the following we mention some examples of initial a barrier. In Sec. lll, we discuss the nucleation across flat

recombination. The most prominent one appears in dissocig2ddes, including the effect of a weak force, and the initial
tion theory of diffusion controlled chemical reactiof. In recombination time. In Sec. 1V, diffusion controlled initial
his 1938 papef?2], Onsager determined the probability of recombination is illustrated for the example of equilibrium
recombination of a pair of ions after a given initial separationKink nucleation.

r. It is well known that, despite the long-range nature of the

C_oulom_b force, there is a finite escape _probability in three Il. ESCAPE ACROSS A BARRIER
dimensions even at zero external driving force. Onsager
gives for the probability of escape exp(,/r), where In the following we consider the motion of a particledn

ro=0102/(4me €okT) is called the Onsager radiug; , de-  dimensions with coordinate, massm, damping constany,

note the charges of the anion and cation, ane, is the  an4 in a potentialU(r). Of course, the particle coordinate
dielectric permeability of the medium. While for small initial yjcariously stands for relevant variables of a rather large
distances the attractive Coulomb interaction leads to strongq|ass of system&hemical reaction variables, ion separation
initial recombination, diffusion dominates Coulomb interac- gistance liquid droplet radius, magnetization, efEhrough-

tion for r larger than the Onsager radius, which leads to gt this paper, we assume that the poteritlahas a mini-

Iargg escape pro.ba.blllty. Itis clgar that in a dilute eIectrontemum atr=0, and depends only on the distanrce|f. In a
and if the dissociation process is due to thermal nucleation . . : .
- e . . ~_One-dimensional systend& 1), this means that/(r) is an
initial recombination dominates homogeneous recombina- ; : L
. ; . . “even function of the coordinate The particle is furthermore
tion. This has strong consequences on the free ion density I .

) S . L ..~ . coupled to a heat bath of temperature The equation of
a superimposed electric field, since initial recombination is

very sensitive to an external force. Note that in a flat poten/notion forr is a Langevin equation with a white noise force
tial, i.e., ifr,=0, Onsager’s result predicts a vanishing initial [15] Equivalently, the system can be described by Kramers
recombination rate. We will show below that this is charac-equation for the phase-space probability density,v,t),
teristic for a three-dimensional system, and it will be differ- wherey is the velocity of the particléfor our purposes we
ent for lower dimensions. may use the velocity instead of the momenjuBelow, we

A two-dimensional example is the two-dimensio2D)  almost always consider the strongly damped case in which
Coulomb gas. Here the force vanishes proportional to 1/ Kramers equation reduces to the Smoluchowski equation
which leads to a logarithmically increasing potential. Though
the potential is not “flat,” this case is particularly interesting -
(see, e.g., Refl13]). Dissociation in the 2D Coulomb gas aP+Vj=0, @
describes, for instance, vortex-antivortex nucleation in super-
fluid helium films. An important feature of this system is that which is a continuity equation for the probability density

there is an unbinding transition of pairs at a critical temperap = rdd,f in configuration space. The probability current
ture. At low temperatures the escape probability vanishes,= fdd,,f is given by

whereas above a critical temperature it is finite. This transi-
tion, which is known as the Kosterlitz-Thouless transition, 1
can be seen as a consequence of strong initial recombination >
A S " =——(PVU+KTVP), 2
which inhibits free excitations below the critical temperature J my( ) @
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where the Einstein relatio® =kT/my between diffusion that for the flat saddle, the first correction term to Eg).is
constantD and damping constant is related to local equi- strongly changed as compared to the quadratic saddle. In
librium. particular, there should be a strong dependence on the length
The nucleation ratd,,. can be defined as follows. First, of the diffusion region. In the present work, however, we
one has to find a stationary solution of Kramers equatiorconsider the strongly damped case, or corrections to this case
which is normalized in the well. Outside the well, this solu- for finite but small 14. To find the corrections, we will use
tion has to satisfy appropriate boundary conditions. Usuallya result of boundary layer theory.
absorbing boundary conditions are applied. Then the current
crossing the boundary is the nucleation rate. This approach
has the advantage that the determination of the nucleation
rate is reduced to the solution of a stationaftyme- We again consider a symmetrical potential well. For de-
independentproblem. creasing <&, the potential is assumed to drop strongly and
In the remaining part of this section, we recall some re-monotonously to its minimum value-Eq at r=0. Forr
sults for one-dimensional systems and for saddles which arg ¢, it is assumed to increase monotonously and to con-
not flat in the above mentioned sense. Furthermore, we r&zerge quickly to zero. Heré, is a characteristic half-width
strict the discussion to low temperatures, ileT,<Eq. FOr  of the well defined by the specific physical problem under
moderate-to-strong damping, for a quadratic saddle=a&,  consideration(see, e.g., Sec. IV A typical example is
Kramers found an analytical result which reduces in thesketched in Fig. (b). As mentioned above, for the one-

Ill. ESCAPE ACROSS A FLAT POTENTIAL REGION

strong damping limit to the Smoluchowski rate dimensional casd=1, we assume reflection symmetry, and
in higher dimensions we assume a rotationally invariant po-
=2 wowsexq—EO/kT). (3y  tential, which allows us to confine all calculationsrte-0.
2wy On a large length scale (> &;), we assume a periodic lat-

. tice of such wells. A two-dimensional sketch is shown in

The rate depends on the Arrhenius factor exig{/kT), on  Fig 1(c). Since there is no activation barrier, we introduce a
the damping constan, and on the curvatures at the mini- fictitious boundary which separates bound states and free
mum and at the saddle, wo=yd;U(0)/m and states. We define the occurrence of a nucleation event as the
ws=\|#?U(s)|/m, respectively. The factor 2 in E43) oc-  escape of the particle from the regiorcs. Initial recombi-
curs because the symmetry of the one-dimensional potentialation denotes recombination with the original well, while
implies two equivalent paths of escape from the well. In thewe define here homogeneous recombination as capture by a
weak damping limit ¢—0), Kramers’ moderate-to-strong neighboring well[Fig. 1(d)]. We emphasize that homoge-
damping result yields the transition sta#ST) rate neous recombination and initial recombination differentiate
histories of particles with separations larger tlsaA homo-
geneous recombination event is thus represented by a trajec-
tory that starts froms and ends up at a different well,
whereas initial recombination is represented by a trajectory
This result is wrong since thermal equilibrium is assumed irthat starts froms and after excursion in the flat potential
the well which is no longer the case at very low damping. Anregion returns to the initial well. Initial recombination, like
appropriate(slow) variable is then the action variable(or ~ homogenous recombination, thus refers to particles that have
the energyE). By an averaging over the fast angle variable,completely dissociated. The only difference is their different
Kramers therefore derived a diffusion equation in actionsubsequent history due to diffusive motion.
space. A solution of the nucleation problem in this space In order to determine the nucleation rate, we consider first
yields the true rate in theg—0 limit: a single well. The bare potenti&l(r) does not exhibit a
saddle and the particle “feels” an attracting force which,
however, become@xponentially small with increasing dis-
tance from the well. Once the particle is far enough away, it
behaves thus purely diffusive and must be considered to be
Herel g is the action of the separatrix trajectory at the saddldree. As in standard nucleation theory, the solution of the
in phase space. We mention that regbjtremains also valid Kramers problem must obey absorbing boundary conditions
for the “flat saddle” in Fig. 1b), since aty— 0 the particle  outside the well. The introduction of the points on the
escapes ballistically, i.e., without backscattering in the regiorilat region where these boundary conditions are applied de-
with constant potential. fines the size of a fictitious saddle separating the bound state

Rates(3) and (5) are the leading order results inyland  from the free states. The exact location of this point is not
v, respectively. The crossover between these limits is knownletermined due to local translational invariance in the region
as the Kramers turnover problem. Renewed attention to thisf constant potential. However, besides satisfylirgs> &,
problem followed Refs[16,17] which investigated the lead- it should be fixed by physical conditions. A typical example
ing corrections to Eq(5) and provided computational results of an experimental condition which provides a certain value
illustrating the turnover. A particularly elegant approach toof sis the finite resolution of an instrument which counts the
this problem was put forth in Ref$12,18, and indepen- free particled9].
dently in Refs[19,20 based on boundary layer theory. Later ~ To calculate the nucleation rate, we solve the stationary
it was noticed that the problem can be solved over the entir&moluchowski equatiofil) in radial coordinates. Due to ro-
turnover region by normal mode analy$®l]. We expect tational symmetry there is no dependence on angle coordi-

%0
Jrsr=2_ expl — Eo/KT). (4)

wols

Jnuc= ’}’m—qu_EO/kT)- 5
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nates ford>1. With an ansat?(r)=B(r)exd—U(r)/kT]  This works only for a saddle with a well-defined sharp maxi-

for the probability density, one finds, from E¢t) for the =~ Mum. We anticipate that the nucleation ré% depends in

radial current density il dimensions, general ors. The discussion of the dependence of the nucle-
ation rate on this parameter is our main goal. In the sequel

C the high- and low-temperature limits will be discussed sepa-
jr=—D exfd —U(r)/kT]o;B(r) = —=. (6) rately.
r
HereC has to be determined, and is related to the nucleation A. High-temperature limit

rate by J,,.=aqC with a;=2, a,=2m, andaz=4w. The

7 . For very high temperaturdsT>E,, the particle “sees”
density is assumed to be normalized y g b 0 b

an overall flat potential and does not “feel” the well. From
s Eq. (9), one finds a rate
f P(r)agrd tdr=1, 7)
0 3o D 2d (10
n .
and to satisfy the linear, homogeneous, and mixed boundary 82 1+ 2(Xn/s)
conditions ats [22]:

In the high-friction limit this describes just the spatial diffu-
sion out of a regiorr <s. In the low-friction limit, on the
Iqther hand, the rate @D/(sXy,) = vkT/m/sa. Although this
result cannot be exact as discussed above, let us compare it
with an estimate of the zero-friction result obtained directly
Yrom phase-space considerations. In the limi{>s, the
rprobability density in phase spacHyr,v), must be consid-
ered rather than the configuration space derB{ty). For a

Xmarpls+ P|s:O- (8)

Some comments concerning this boundary condition are i
order (see, e.g., Ref[3]). First, x,,= a\/D/y is the Milne
length which is a measure for the nonequilibrium boundar
layer at an absorbing boundary. Indeag,<kT/m/y can
be interpreted as the mean free path of a particle with the
mal velocity. We mention that the first term in E§) can be constant potential, we takb=A exp(mv%2kT) for radial

understood as a correction obtained from a Taylor expansion~, = .. - .
; ; . ) velocities pointing away from the well, arfd=0 for veloci-
to first order with respect tox,. In one dimension,

a=(— 1)~1.46. In higher dimensions is changede.g., ties pointing toward the well. In the following, we restrict

due to the finite curvature of the boundgriut here we are c_)ursel\_/es to the one-dimensional case. The dens!ty in con-
figuration space r=0) and the current density are

not interested in details concerning this problem, and we will :
. . . P=/[dvf=Ay7kT/2m and j=fv dvof=kTA/m, respec-
usea as a given parameter. In the limjit—oo, an absorbing tively. Normalization implies P=1/2s and we find

boundary ats implies P(s)=0. On a microscopic length L e e
scale, the boundary conditidi®) describes the solution as- Jnue= 21._( .2/ 7)(VkT/m)/s. Up t0 a con_stant factor of or-
der 1 this is in rather good agreement with the result derived

ymptotically far away from the absorbing boundary, from Eq. (10).

r<s—Xg,. The boundary layer itselfst- x,,<<r <s) shows a brieflv d . h bination timein th
more complicated structuf@2,23. Hence Eq(8) cannot be Let us briefly etermine the recombination timgin the
overdamped one-dimensional case. Due to equipartition at

d ifx,, is of the order ofs, or if the boundary layer leaks . )
LSEC T 1S O7 1€ Order O, or 1 the houndary ayer leaks high temperatures, the ratio of free particles>E) to par-

into the well. The mixed boundary conditigB) serves only ' , L -’
to investigate how the results presented below change as vii§'eS which are not freer(<s) is given byNyree/Nyen=(L
s)/s~L/s. Now the total nucleation rate and the recombi-

depart from the regime of strongly damped motion; it should™ >’ - :
be clear that, for weak friction, it is not sufficient to consider Nation rate balance each oth@\eJnc=Npee/ 71 Using
the Smoluchowski equation but instead one has rather to uded- (10), this immediately yields the recombination time

the full Kramers equation. 7.-1=Ls/2D. In Sec. Il C, we will discuss the recombination
Let us now continue with the derivation of the nucleationtimes more deeply. _ .
rate. Integration of Eq(6) together with Egs(7) and (8) _ We notice that in the high-temperature Ilmlt the assump-
yields tion of a diluted gas of nucleated structures, i.e., the assump-
tion L> &, breaks down in many physical applications. This
s x.gl—d is becausel "¢ is often a density of nucleated structures
Jnue=D f rd=1dr e‘U“)“‘T(":J—/kT which is itself proportional to an Arrhenius factor, and be-
0 i comes large at high temperatures. In that case, initial recom-
s 44 1 bination and homogenous recombination can no longer be
N J Z az ) (o) Clearly separated.
r e~ U@IKT
Alternatively, we could derive this result by evaluating the B. Low-temperature limit
mean first passage timgee, e.g., Ref[11]) of a particle In this case, thel-dimensional probability density in the

starting atr =0 and reaching =s, with appropriate bound- well is a normalizedsee Eq(7)] equilibrium distribution
ary conditions.

Despite rotational symmetry of the saddle manifold for Po(r)=Aqgexd —U(r)/kT], (11)
d>1, the rate cannot be determined by using the volume of

the symmetry group in the order-parameté} épace[24].  with the normalization constant
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Ag= _mwg d/2 Eo/kT 12 J _wé —exp(—EO/kT) 16
o= | Zaky) SFEo/KT). (12 e (sl €o) + X /S (16
The low-temperature nucleation rate is given by and
f S 1-d 1) 2 [mao? 2¢
Jnuc= agAgD r=—%dr+x,s" " , 13 ®o @o 0
nuc d\d ( & m ) ( ) Jnuc:_ kT 5 qu_EolkT),
Y TR 1—(€o/s) + (éoXm/S?)
where¢, is the size of the well. It is interesting, that in one 17
fs(f)ra;\;:e dimensiond=1), result(13) can be written in the respectively. In contrast to the one-dimensional case, the
well size & cannot be neglected fal>1. Moreover, in two
o X dimensions the dependence is logarithmically weak, and in

JrsT (14)  three dimensions its influence can be neglected. We mention
that a discussion of the result in the limfp—O0 requires
some care, sincé,, wg, andEy are usually not fully inde-
pendent.

Furthermore, ind=2, and 3, neitheg, nor s are neces-
sarily equal to the usual transition state obtained by extrem-
alization of the effective potentiakT In[r %expU/KT)]
=U(r)—kT(d—2)In(r). In contrast to the usual quadratic

Jnuc_ a S_§0+Xm
whereJgris the transition state ratd). Note that despite of
the vanishing of,, in the limit m— 0, where the patrticle is
overdamped, the rate remains finite singgr diverges. In
the overdamped limit and fafy<<s, the rate is proportional
to 1k, and can be expressed in the form

®g \/ﬁ saddle, it is not only the vicinity of this transition state which
Jhue=2—\/ 5——=exXp(— Eo/KT). (15 contributes to the integral in Eq9). It is a larger region
ys ¥ 2mm around the transition state that counts, of whihand s,
respectively, are the lower and the upper boundaries of inte-

Equation(15) and its dependence onsl¢an be understood
as follows. The probability that a particle reaches the fla
portion of the potential at a point ({,<<r<s) is propor-
tional to the equilibrium probability distribution function at C. Lifetime of free particles

this point. Since, according to our choice of the zero of en-  \ye return now to the periodic lattice of the wells sketched
ergy, we have for> ¢, a potentialu=0, the equilibrium iy Fig. 1(c). Each well can then be associated with a unit cell
probability distribution is just given by the prefactd in of volume V4=L% much larger than the volume associated
Eq. (11) specified in Eq(12). Diffusion over a distance  ith bound particles ¢s%). At equilibrium and at low tem-
along the flat potential region in a medium with diffusion peraturesk T<E,, the ratio of particles in the well to free
constantD=kT/my reduces the probability byp/s. The  pariicles is given byNye/Niee~1NgAq. In steady state,
current at a distancs is J=A;D/s. Since our potential is  the generation rat®l, e Jnuc €quals the recombination rate

symmetric around =0, a current of the same magnitude is . /.. The lifetime of free particles is thus given by
also obtained forr=-—s. Thus the total current is

Jaue=2A;.D/s, which is indeed just Eq(15). Thus the 13 V4Aq

dependence is a natural consequence of the flatness of the Td—

potential, and the fact that a particle can progress in this

region Only via diffusion. Equatlo(]lS) is the central result For very Strong damp|ng and f@ro<s, Eqs(14)_(17) im-

of this work. According to Eq(15), the characteristic decay p)

time scales linearly witts. In Sec. IV, we show that the

equilibrium nucleation reate of kinks has the same depen- Ls

dence ors. 155" (19
For weak damping,,>s, we find thatJ, . deviates from

the transition state result only by a factor of 1.73. Tineda-

lgration.

. (18

‘]ﬂUC

2
tively small deviation is due to the above mentioned fact o= L |n<i), (20)
that the inner structure of the boundary layer must be taken 27D "\ &
into account and cannot be described simply by a boundary
condition. One finds exactly the transition state result by an _ L3 21
appropriate  matching of the probability density T3_417D§0' (22)
P=A{wkT/2m (see the end of Sec. lll)Ato the part of
solution (11) associated with right-moving particles>0).  In one dimension, the lifetime scales linearly wighwhile

Hence our result has a behavior similar to Kramers'thesdependence in higher dimensions is weak or negligible.
moderate-to-strong damping formula for the quadraticThe higher the dimension, the smaller the probability of
saddle. As mentioned, E¢L1) is a wrong distribution at low reaching the original well by pure diffusion. This is related to
damping since local equilibrium in the well is not estab-a divergence of the lifetimes &, vanishes. We also men-
lished, and the nucleation rate gt~ 0 is given by Eq(5). tion that Eq.(21) corresponds to the standard result in the
In two and three space dimensions, the rates can be exheory of diffusion controlled reactions, which states that the
pressed in the form rate per volume is given by #D &, (see, e.g., Ref[3]).
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For the one-dimensional case, the lifetime can be calcurespectively. This yields a relation between the two currents,
lated directly by solving the Smoluchowski equatidnfora  Jyane= JnudanhES2kT). A similar result has been derived in
flat potential, for absorbing boundary conditions Ref. [6] for photogenerated currents. According to our as-
P(0)=P(L)=0, and for an injected currefji{s+0)—j(s  sumptions, the results are valid in leading order with respect
—0)=|jncatr=s.If P(r) is normalized, the lifetime is then to F. An expansion gives
given by 1j ... One finds that recombination can be under-
stood as a sum of two contributions, i.e., it holds Fs

jnuc=istin, Wherej  '=Ls/2D is associated with Eq19) Jirans™ sz‘]nUC' (28)
and j, *=L(L—s)/2D is associated with diffusion to the
neighbor well. Since the nucleation rate is proportional $0%, the total

Below, in the discussion of equilibrium kink nucleation, current is independent afas it must be.

we will first calculate the lifetime independently from the  We now present two derivations to show that the transport
nucleation rate and from equilibrium statistical mechanicscurrent Eq.(22) is indeed just determined by the imbalance
Then using both results for the nucleation rate and the lifeof the forward and backward nucleation rates. For weak driv-
time, we will derive the equilibrium kink density and show ing forces the transport current is equal to the density of free
agreement with the statistical mechanics result for the kinlcarriers,n;.., multiplied by their drift velocityu= wF,
density.

Jirans™ UNfree= 1 F Niree. (29)

D. Effect of a weak force

s usual, the mobility and the diffusion constant are related
a the Einstein relatio = ukT. The number of free carri-
ers is determined by the balance of the generation of free
particles and their recapture into a well,,c= N/ 7 With

In this section we discuss the influence of an externaCi
weak forceF on nucleation in one dimension and at low
temperature. The potentibl(r) is now replaced by the new

potential U(r)—Fr. We are interested in the response toN —L , . .
; : o ree= LNgee. Hered,, . determines the frequency with which
leading order with respect te. The saddle is still flat enough free particles are generated, aNg~1. The lifetime 7

such that diffusion dominates the drift in the relevant region:WhiCh determines the recapture back into the well is a func-
kT>Fs. For finite F, the current to the leftj() and to the X

iaht (i | | 4 th leati © i tion of F. But, to leading order i, the equilibrium lifetime
ng (”) are no fonger equal, and the nucleation rate IsEq. (19) is all we need. Eliminating the density of free car-
Jwe=]+ T . Interestingly, as we will show below, the

g : ) riers and using the Einstein relation, we find
transport currend, o5 is determined by the imbalance of the Jyane= wF73,/L=(FS/2kT)J, .. This is in accordance

forward nucleation ;. and the backward nucleatign . To with Eq. (28), and thusJane=j + —j _ holds.

leading order irF, the transport current is thus given by A second derivation of this result proceeds as follows. We

Jian=J+—J_ . (22)  still consider a periodic potential with periddand which is
symmetric around the origin. It is sufficient to consider the
The symmetry relatiold (r)=U(—r) implies j,(F)=j_ range Gsr<L. We view the transport current as a conse-
(—F), andJ,,,.is an even function of while J,cis anodd quence of the source currenfs, at r=s and j_ at
function of F. We find r=_L—s. The wells act as particle absorbers. The solution to

this problem is a superposition of solutions to two problems
. A.F 1 each with one source alone. The current which flows back
j+=D g [1-exp(—Fs/kT)] (23 fromr=sin the presence of the sourpe is denoted by ,
and the current which flows forward to the next well .
whereA, is the normalization constant given by Ed2)  Similarly, the sourcg  alone leads to a current back into the
with a renormalized frequency and an energy of the newvell at r=L denoted byj® and a current into the well at

minimum: r=0 denoted byj- . The transport current is then given by
~ u® Jpans= i+ - 30
wo= wg 1+ GFZ’ (24) trans— ]+ T J - ( )
Continuity of current requires
- F2 Rl iR
Eo=Eo| 1+ ———|. (25) je=it-ih, =ikt (31)
meoEO

As we have seen already the source currents have the sym-
In Eq. (24), we definedJ(4)E&fU|0. The nucleation current metry j,(—F)=j_(F). The homogenous recombination
Jnuc@nd the total currentyanscan then be written in the form  currentsj? and j- are related by symmetry according to
~ iR(—F)=—]"(F). On the other hand, the initial recombi-
ﬂcot)'( E) (26) nation currents are even functions of the field
my 2kT)” i“(—=F)=j4%(F) andj?(—F)=jR(F) and, moreover, they
are equal in magnitude but differ in their sign,

Jhuc=

Jrans™ 11 27) iSF)==j%F). (32)



PRE 58 DIFFUSION CONTROLLED INITIAL RECOMBINATION 1539

The initial recombination currents are maximal fé.=0.  strongly enhanced probability of initial recombination
With increasingF the recombination currerth+ decreases (closed loops Neglecting the closed trajectories is inconsis-
because homogeneous recombination increases. Similarlignt with the experimental definition of free kinks. Former
the initial recombination current®(F) decreases because Works [7,34] (see also Refl11]) do not include the initial
there are fewer carriers activated into the high energy regiofecombination processes and count only the negligibly small

of the potential. Using Eqgs(30) and (31) we obtain fraction of extended trajectorigsee Fig. 1b) of Ref. [1])
Jpan=1+—i-+i%(F)+j®(F). But as we have seen the Which describe homogeneous recombination. Consequently,

sum of the two initial recombination currents cancel one anthese works arrive at a much too low nucleation rate with an
other, and thus,a—j+—j_ . Thus at low fields the differ- activation energy By associated with a kink tr!ple, mstead
ence of the two activation rates directly determines the trans2f the pair energy B, . Hence these works predict an incom-
port current. This can also be shown by a direct calculationPrehensible breaking of the kink-antikink symmetry. A fur-
The direct relationship of the ratg¢s and]_ to the transport ther consequence is a mean kink lifetime proportional to
current demonstrates that these are physically meaningf@P(Z«/KT) [7,34,33, whereas our theory leads to a kink

and useful quantities. lifetime proportional to exg,/KT).
To be specific, let us consider now the overdamped sine-
Gordon equatiof27]
IV. EQUILIBRIUM KINK NUCLEATION

-\ 2
In this section we investigate the dynamics of a string of Y96=—=VosSin 0+ F+ kdy6+ ¢, (33

particles coupled to each other harmonically, and moving in hich describes the dynamics of an order-parameter feld

a sinusoidal potential. The particles are subject to damping, . : . N . :
and noise, and might be subject to an external driving force;g”ng of particles 6(x,t) in a periodic potential of amplitude

This model is known as the driven and damped sine-Gordor{ %’ and with a coupling constamt Unless otherwise stated,

chain. It has a long history and due to its wide range oft e;gfrcel; |zfettto_ éerot. Weh aszum?hpenodml bloun?r?ry
applicability, from kinks in surface steps on various materi-c0Na!oNS (L+x,0)=0(x,1), whereL is the sample leng

als to the motion of fluxons in long Josephson junctions, ha: hich exceeds every o_ther r_elevant length scale_of the_prob-
been widely studiefiL1,14,25—35 In the overdamped limit, em (except the diverging size of the mathematical critical

which is of interest here, there are only two types of elemenDUCIeus' Furthermore/ denotes a weak white noise force

tary excitations. There are small amplitude phononlike exci_assomated with the temperatuf i.e., with zero mean

tations and, more interestingly, highly nonlinear structures{¢)=0 and the correlation function({(x,t){(x,1))
called kinks or solitary structures, which describe the transi=2ykTd(x—X) 8(t—t). The uniform, stationary, and lin-
tion from one valley to another. In chemical physics, kinksearly stable states are given I8y, =2l = (Peierls valleys
are discussed in various polymdi36]. Our concern is the with integerl, and have equal energies. There exists an en-
statistical mechanics of such a system, which we take to bergy functionalE[ 4], such that Eq(33) can be rewritten in
so large that one can define a density of kinks and antikinkshe form yd,6= — SE[ 8]/ 56. For a weak finite force, two
Of interest is a theory of the thermal equilibrium nucleationadjacent Peierls valleys are separated in function space by a
of kink-antikink pairs, and particularly the role of initial re- saddle which corresponds to a kink-antikink pair. A kink
combination[1]. We show that a theory of equilibrium kink  ¢,(x—x,) centered ak, connects a Peierls valle§s, with
nucleation, i.e., for a vanishing external driving foreeust its neighbor 6s,.1. An antikink is reversely defined by
take into account initial recombination. 0,= 0 (—Xx+Xg). A kink-antikink pair at locationx, and
At small temperatures the kink-antikink gas is diluted, with a (not too small separatiorr can be written approxi-
and the kink density sets an upper length scale over whichhately as  6y(X)= 0 (X—Xo+/2)+ 6, (—X+Xo+1/2)
nucleation and annihilation processes have to occur. In the-27(1+1). In the presence of a weak forée the math-
framework of equilibrium statistical mechanics, kinks andematically exact saddle point of the energy functional corre-
antikinks are regarded as free particles. Below we shall exsponds to a pair with a separatiagn= &,In(V,/F) where
plain that at equilibrium the distance between a“mathemati—goz\/T\/o is now the kink size. In the equilibrium limit
cally unbounded" kink-antikink pair is infinitely large. Ap- \whereF— 0, the separatiog exceeds the inverse kink den-
parently, this seems to contradict the notion of a free kink insjty n=1 or even the system lengify In this case, the math-
a finite system. For reasons of consistency, it is thus necegmatically exact critical nucleus has no physical meaning. In
sary to develop a picture of the nucleation and annihilationyrder to overcome the problem of the large critical nucleus,
processes which permits essentially free diffusive motionye introduce an effective critical nucleus with a separation
during the lifetime of a kink. o  of the kink and the antikink which is larger than a kink width
The nucleation, dynamics, and recombination of kinkspyt much smaller than an average equilibrium separation
and antikinks in space-time is schematically illustrated in=n-1 of kinks. The effective critical nucleus corresponds to
Fig. 1 of Ref.[1]. Out of equilibrium, in the presence of a the flat barrier with sizes, in analogy to the effective saddle
strong force(see Fig. 1a) of Ref.[1]), the kink and antikink  giscussed in the previous sections.
are driven apart after a nucleation procésspty triangles
by the force, and eventually annihilate with an antikink and a
kink originating from a different nucleation proce§®ct-
angles. This picture has to be qualitatively modified in the ~ We derive now the kink nucleation rate per lengihyc.
equilibrium case without force. As shown in Figblof Ref.  Note that, due to the periodic array of Peierls valleys, kink-
[1], the diffusive motion of the free kinks gives them a antikink and antikink-kink excitations are equivalent. If the

A. Nucleation rate
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nucleation rate of the former and the latter are denotef, by B. Lifetime of kinks
and j_, respectively, the rate becomeg,=j.+j-. Of In the following, we show that the resyB7) is consistent
course, at equilibrium it holds, =| . The presence of spa- \ith equilibrium statistical mechanics, which predicts an

tial degrees of freedom requires a multidimensional Kramergqyilibrium kink density[30]

theory [24]. The relevant coordinate is the kink-antikink

separatiorr which can be associated with a quasi-Goldstone 2VoEy

mode, besides the usual translational Goldstone mode of the Neq= V o EX —EW/KT). (38)
pair. The quasi-Goldstone mode i86y/r = 6, (Xx—Xg

+1/2)12+ 6,(—x+Xo+1/2)/2 associated with an infinitesi- |n order to derive this result independently, we will calculate
mal variation ofr. The (orthogonal Goldstone mode associ- first the kink lifetime 7. By using the balance equation
ated with an infinitesimal displacemenk, of the pair is  J  r=n, we obtain a kink density which has to be compared
861 8%g= Op(—X+Xo+8/2) = O (X— X+ S/2). with Eq. (38).

The stationary Fokker—Planck equation associated with The kink lifetime 7 for a fixed antikink densityr can be
the Langevin equatiof33) is solved in a way analogous to calculated with the help of a Langevin equation for the kink
that in Sec. Ill[1]. Degrees of freedom which are transverseseparatiorr. This Langevin equation follows from a projec-
to the two Goldstone modes can be integrated out by Gaussion of the sine-Gordon equatio33) onto the quasi-
ian integration[30]. The rate per length of a kink-antikink Goldstone mode discussed above. The Fokker—Planck equa-
pair then becomefl] tion, which is equivalent to_the Langevin equation, in the
stationary case reads(FP—Dd,P)=0. Here we assumed a
finite force F for later use. The effective force acting on the

separation coordinate is given By=2xF with a mobility
u=2mklyE,, and the diffusion constant is given by

D=2ukT/27 [29,30. The values of andD for the rela-

One cﬁoncludes an activation enerdyo=2E,, where tive coordinate are twice as large as for a single kink. Now
Ei=81xV, is the equilibrium kink energy30]. The vari we return to the casé=0. The stationary Fokker-Planck

ables and are the orthonormal-mode coordinates . . i
0 n equation must be solved with a sourcerats, and with

which belong to the kink-separation mode and to the trans-. by .
lational mode, respectively. It holds that sinks atr=0 andr=n"". The source describes the nucle-

ation of a pair, and the sinks model kink-antikink annihila-
tion. The mean kink distance™! corresponds here to the
2_ 4.2 2 2_ 42 2 well distancel introduced in Fig. {c) for one dimension.
dmo=dr f(ﬁe’\‘/&) dx, dn} dxof (00n/ X0)dx Now we can proceed as in Sec. Ill C. Integration of the
(35  stationary Fokker—Planck equation leads to a piecewise con-
stant current density, whereas the source implies a disconti-

Using the quasi-Goldstone and the Goldstone modes givefuity of the current density of strengjh ats. The absorbing
above, one finds for the ratio of the integrals in Egd) a  boundary conditions deman@(0)=P(n~")=0. The life-

value 2 /s. The normalized partition function of the damped time 7 is defined by the ratio of the total probabilifidsP
degrees of freedom at the saddle, and the injected current, . One then finds immediately re-

sult (19) with L replaced by 1, i.e.,

=i\/>\“">\“"]§[ ) (36) S
2 0 ln:2 )\l’:‘ ’ T= ZfJn (39)

The balance equation, together with E§7) immediately
implies the equilibrium density38), which proves consis-
tency with statistical mechanics, i.@=ng,.

a Asitmust be, the stationary kink densit$8) is indepen-
dent of the specific value &f Thes dependence of the rate
and of the lifetime can be illustrated in Fig. 1 of REf]. The
kinks which are to be counted [i©0,£] at a fixed tim& must
have been nucleated in a strip-,t) of width ros. Since
the number of counted kinks has to be independers tife
density of generation events in this strip must be proportional
to 1/s. A variation ofs affects only kinetic quantities like the

. 4r time scale, but not thermodynamic equilibrium quantities
Inue= 2]+ =2 exp(— 2B, /KT). (37 like the kink density.

Zy S5 dm,
NJO0

?—fno(s)dn exp(—ZEk/kT). (34)
sJo 0

j+=

1
L

N1| l
£ |z

contains the stability eigenvalues’ N of the metastable
state(index M) and the critical nucleugindex N) with re-
spect to perturbations with a decéayr a growth «exp(\t).
The (quasij zero modes are excluded in the products. For
well-separated pair, Eq36) is the renormalized partition
function of a kink-antikink pair without self-interaction, and
is given by the square of the single kink partition function.
Hence, Zy/Zy=4T 127, whereT'=V,/y [30]. The kink
nucleation rate per length finally becomes

As discussed in Sec. lll, thedldlependence is a consequence C. Effect of a weak force

of the strong dependence of the rate on initial recombination In the presence of a weak forée we expect a drift in the
events in one-dimensional systems. order-parameter field. Kinks and antikinks which pass a
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given location with average velocityand — u, respectively, V. CONCLUSION
each advance the field byr2 Thus the average speed of the

o In this paper we have shown that diffusion controlled ini-
order-parameter field is

tial recombination strongly affects the activation rate in
9.0y =2u(n+m), 40 problem_s with fl_at pot_entlals. The effect is partlcularly im-
() =2mu( ) (40 portant in one-dimensional systems where the probability of
wherem andn are the average kink and antikink densities. Indiffusion back to the original well is very large. The absence
our problem it holdsi=m. To leading order in the fiel& of a well-defined barrier maximum requires the definition of
the velocity is simply determined by the kink mobi’lity an effective size of the barrier, i.e., a location where for the
u=uF, and the kink density is determined by the equilib- evaluation of the rate absorbing boundary conditions to the
rium dénsity Thus to linear order in the for€ethe order probgbmty density are applied. In one-_dlmensmnal systems
arameter hés a velocif0] the time and, as a consequence, the inverse rate, scale lin-
P early with this size.
_ Furthermore, we discussed equilibrium kink nucleation as
0i0)y=4m7uFng,. 41 ' o S
(010)=4muFneg “1 an example where diffusion controlled initial recombination
We will rederive this result directly from the kink nucleation determines the kinetics. The effective saddle corresponds
rates. As in the single-particle problei@8) of Sec. Il D the  here to an effective critical nucleus. A certain arbitrariness of
transport current can be directly related to the asymmetry of1€ nucleus size reflects the uncertainty of the notion of a
the kink nucleation rates. The kink nucleation rdtg, is free kink. A specific choice of this size, however, has to be
balanced by kink recombinatiod,,=n/r. Here r is cthe related to physical considerations: obviously, it has to be
lifetime of Kinks. which as we hr:’;j\cle seen is at low fields '2rger than the kink width but much smaller than the mean

kink distance. We have shown consistency of our results

ge_t%rmm?d prbed(ém(lgg)tellzyr by n;l.ltlaltr:ecl?n:(bcljnathtn fand yith equilibrium statistical mechanics. Furthermore, we have
=Y IS given by ¢ - Eliminating the kink densily Irom g4y "that the activation rates directly determine the trans-

Eq. (40), we obtain(d;0)=4murdy,c. Now we find that the o+ orrent. Our work not only demonstrates that rates and
difference of the two nucleation currents is given by lifetimes are useful quantities even if they depend explicitly
on a length scale which separates free particles from bound
(42) particles. It also demonstrates that an evaluation of such rates
is necessary to provide a physically meaningful discussion of
problems in which diffusion controlled initial recombination
To leading order in the field, it follows immediately that the plays a dominant role. Verification of the results presented
average velocity of the displacement field is directly deter-here through computational work is difficult due to the long
mined by the imbalance of the nucleation rates, simulation times involved in nucleation problems. On the
other hand, the many physical systems mentioned in the in-

_Es
2D

‘]nuc-

j+—j,

2 _ troduction to Sec. IV, to which the sine-Gordon theory ap-
(:0)= E(H_J -)- (43 plies, would certainly provide opportunities for the experi-
a mental investigations of equilibrium kink nucleation. We
This expression is equivalent to E@.1). hope that the present work stimulates such experiments.
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