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This work addresses nucleation rates in systems with strong initial recombination. Initial~or ‘‘geminate’’!
recombination is a process where a dissociated structure~anion, vortex, kink, etc.! recombines with its twin
brother~cation, antivortex, antikink! generated in the same nucleation event. Initial recombination is important
if there is an asymptotically vanishing interaction force instead of a generic saddle-type activation barrier. At
low temperatures, initial recombination strongly dominates homogeneous recombination. In a first part, we
discuss the effect in one-, two-, and three-dimensional diffusion controlled systems with spherical symmetry.
Since there is no well-defined saddle, we introduce a threshold which is to some extent arbitrary but which is
restricted by physically reasonable conditions. We show that the dependence of the nucleation rate on the
specific choice of this threshold is strongest for one-dimensional systems and decreases in higher dimensions.
We also discuss the influence of a weak driving force, and show that the transport current is directly deter-
mined by the imbalance of the activation rate in the direction of the field and the rate against this direction. In
a second part, we apply the results to the overdamped sine-Gordon system at equilibrium. It turns out that
diffusive initial recombination is the essential mechanism which governs the equilibrium kink nucleation rate.
We emphasize analogies between the single particle problem with initial recombination and the multidimen-
sional kink-antikink nucleation problem.@S1063-651X~98!10008-9#

PACS number~s!: 05.40.1j, 82.60.Nh, 72.20.Jv, 11.10.Kk
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I. INTRODUCTION

The purpose of this work is to support our approach to
nucleation problem of kinks and anti-kinks in the ove
damped sine-Gordon chain at equilibrium@1# by investigat-
ing closely related problems which are dominated by ini
~or ‘‘geminate’’! recombination processes. Initial recombin
tion is a process where a dissociated structure~anion, vortex,
kink, etc.! recombines with its twin brother~cation, antivor-
tex, antikink! generated in the same nucleation event@2–6#.
Our theory of kink-antikink nucleation@1# leads in the ther-
mal equilibrium state of the sine-Gordon chain to an acti
tion rate proportional to exp(22Ek /kT), with an activation
energy of twice the equilibrium kink energyEk. This can be
compared with earlier work@7# which predicts a rate propor
tional to exp(23Ek /kT). This significant difference in the
nucleation rates is a consequence of initial recombination
kink-antikink pairs. Although our discussion presents a cl
physical picture, our results are apparently not obvious
have already given rise to discussions in the literature@8,9#.
It is therefore necessary to further support and explain m
deeply the point of view and the approach taken in Ref.@1#.

Usually, nucleation theory@10# ~for reviews, see Refs
@11,12#! is associated with the decay of a metastable s
across an activation barrier. A simple picture is a Brown
particle which has to overcome a barrier in order to leave
region of attraction of a potential well@see Fig. 1~a!#. One of
the main tasks of nucleation theory is the evaluation of
current flow out of the well for a given density of particles
the well. The relevant time scale of such an activated proc
is dominated by an inverse Arrhenius factor exp(E0 /kT),
whereE0, k, andT denote the activation energy, the Bolt
PRE 581063-651X/98/58~2!/1533~10!/$15.00
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mann constant, and the temperature, respectively. The nu
ation rate is then proportional to the Arrhenius factor. T
proportionality constant is in the center of interest in ma
works, and depends strongly on the shape of the poten
and on the strength of the damping of the Brownian partic

FIG. 1. ~a! Potential well with an activation barrier atr 5s and
with an activation energyE0 . ~b! Potential well without a barrier
maximum, but with a flat region; this case has to be treated
introducing a threshold points. ~c! Lattice of potential wells with
distanceL. ~d! Typical traces of initial recombination~ir! and ho-
mogeneous recombination~hr!.
1533 © 1998 The American Physical Society
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1534 PRE 58T. CHRISTEN AND M. BÜTTIKER
In the present work we emphasize the particularly interes
problem of nucleation and recombination in systems with
asymptotically ‘‘flat saddle’’@see Fig. 1~b!#. We will con-
sider activation out of a well onto a region where the pot
tial converges fast to a constant value, without crossin
barrier with a maximum. Except for a few remarks on t
underdamped limit, we will restrict ourselves to strong
damped systems. This corresponds to a diffusion in confi
ration space on the flat saddle region. Furthermore we
allow a very slow drift due to a weak external driving forc

The main difference from the usual nucleation acros
saddle with a well-defined maximum consists in an enhan
probability of backscattering into the well. Indeed, wh
there the particle is driven away by the deterministic fo
once the barrier maximum is traversed, the particle on a
saddle executes a diffusive motion leading to a large pr
ability of falling back into the original well. This proces
corresponds to initial recombination in generatio
recombination kinetics and is in contrast to homogene
recombination. The homogeneous recombination rate is
portional to the density of wells, and is much smaller th
the rate of initial recombination for a diluted well densit
The processes are illustrated in the lower part of Fig. 1.

In the following we mention some examples of initi
recombination. The most prominent one appears in disso
tion theory of diffusion controlled chemical reactions@3#. In
his 1938 paper@2#, Onsager determined the probability
recombination of a pair of ions after a given initial separat
r. It is well known that, despite the long-range nature of
Coulomb force, there is a finite escape probability in th
dimensions even at zero external driving force. Onsa
gives for the probability of escape exp(2ro /r), where
r o5q1q2 /(4pe re0kT) is called the Onsager radius,q1,2 de-
note the charges of the anion and cation, ande re0 is the
dielectric permeability of the medium. While for small initia
distancesr the attractive Coulomb interaction leads to stro
initial recombination, diffusion dominates Coulomb intera
tion for r larger than the Onsager radius, which leads t
large escape probability. It is clear that in a dilute electrol
and if the dissociation process is due to thermal nucleat
initial recombination dominates homogeneous recomb
tion. This has strong consequences on the free ion densi
a superimposed electric field, since initial recombination
very sensitive to an external force. Note that in a flat pot
tial, i.e., if r o50, Onsager’s result predicts a vanishing init
recombination rate. We will show below that this is chara
teristic for a three-dimensional system, and it will be diffe
ent for lower dimensions.

A two-dimensional example is the two-dimensional~2D!
Coulomb gas. Here the force vanishes proportional to 1r ,
which leads to a logarithmically increasing potential. Thou
the potential is not ‘‘flat,’’ this case is particularly interestin
~see, e.g., Ref.@13#!. Dissociation in the 2D Coulomb ga
describes, for instance, vortex-antivortex nucleation in sup
fluid helium films. An important feature of this system is th
there is an unbinding transition of pairs at a critical tempe
ture. At low temperatures the escape probability vanish
whereas above a critical temperature it is finite. This tran
tion, which is known as the Kosterlitz-Thouless transitio
can be seen as a consequence of strong initial recombin
which inhibits free excitations below the critical temperatu
g
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@4#. We mention that there is no simple single-particle p
ture of the Kosterlitz-Thouless transition, since screening
the excitations play a major role.

Initial recombination in one-dimensional systems is fac
e.g., in photoelectric carrier generation in 1D semicondu
ing polymers@5#. Haberkorn and Michel-Beyerle@6# consid-
ered electrons which are photogenerated close to an elec
in a one-dimensional conductor, including the image force
the electrode. In particular, they discussed the relation
tween the total current due to a weak external force, and
‘‘nucleated’’ current. We will take up these results below

Note that the listed examples are all controlled by an
teraction force rather than by diffusion alone. In this pap
however, we emphasize diffusion controlled, i.e., entro
driven, initial recombination. This requires that the force
short ranged. Short- range forces occur, e.g., between k
or domain walls in ~quasi-! one-dimensional systems. A
kink-antikink interaction potential is often a monotonous
increasing function of the separation, and becomes expo
tially flat for large separations@14#.

The paper is organized as follows. In order to fix t
notation and for later comparison, in Sec. II we briefly r
view some standard results of the theory of nucleation ac
a barrier. In Sec. III, we discuss the nucleation across
saddles, including the effect of a weak force, and the ini
recombination time. In Sec. IV, diffusion controlled initia
recombination is illustrated for the example of equilibriu
kink nucleation.

II. ESCAPE ACROSS A BARRIER

In the following we consider the motion of a particle ind

dimensions with coordinaterW, massm, damping constantg,
and in a potentialU(rW). Of course, the particle coordinat
vicariously stands for relevant variables of a rather la
class of systems~chemical reaction variables, ion separati
distance, liquid droplet radius, magnetization, etc.!. Through-
out this paper, we assume that the potentialU has a mini-
mum atrW50, and depends only on the distancer 5urWu. In a
one-dimensional system (d51), this means thatU(r ) is an
even function of the coordinater. The particle is furthermore
coupled to a heat bath of temperatureT. The equation of
motion for rW is a Langevin equation with a white noise forc
@15#. Equivalently, the system can be described by Kram
equation for the phase-space probability densityf (rW,vW ,t),
wherevW is the velocity of the particle~for our purposes we
may use the velocity instead of the momentum!. Below, we
almost always consider the strongly damped case in wh
Kramers equation reduces to the Smoluchowski equation

] tP1¹ jW50, ~1!

which is a continuity equation for the probability densi
P5*ddv f in configuration space. The probability curre
j 5*ddvv f is given by

jW52
1

mg
~P¹U1kT¹P!, ~2!
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where the Einstein relationD5kT/mg between diffusion
constantD and damping constantg is related to local equi-
librium.

The nucleation rateJnuc can be defined as follows. Firs
one has to find a stationary solution of Kramers equat
which is normalized in the well. Outside the well, this sol
tion has to satisfy appropriate boundary conditions. Usua
absorbing boundary conditions are applied. Then the cur
crossing the boundary is the nucleation rate. This appro
has the advantage that the determination of the nuclea
rate is reduced to the solution of a stationary~time-
independent! problem.

In the remaining part of this section, we recall some
sults for one-dimensional systems and for saddles which
not flat in the above mentioned sense. Furthermore, we
strict the discussion to low temperatures, i.e.,kT!E0. For
moderate-to-strong damping, for a quadratic saddle atr 5s,
Kramers found an analytical result which reduces in
strong damping limit to the Smoluchowski rate

Jnuc52
v0vS

2pg
exp~2E0 /kT!. ~3!

The rate depends on the Arrhenius factor exp(2E0 /kT), on
the damping constantg, and on the curvatures at the min
mum and at the saddle, v05A] r

2U(0)/m and
vS5Au] r

2U(s)u/m, respectively. The factor 2 in Eq.~3! oc-
curs because the symmetry of the one-dimensional pote
implies two equivalent paths of escape from the well. In
weak damping limit (g→0), Kramers’ moderate-to-stron
damping result yields the transition state~TST! rate

JTST52
v0

2p
exp~2E0 /kT!. ~4!

This result is wrong since thermal equilibrium is assumed
the well which is no longer the case at very low damping.
appropriate~slow! variable is then the action variableI ~or
the energyE). By an averaging over the fast angle variab
Kramers therefore derived a diffusion equation in act
space. A solution of the nucleation problem in this spa
yields the true rate in theg→0 limit:

Jnuc5g
v0I S

2pkT
exp~2E0 /kT!. ~5!

HereI S is the action of the separatrix trajectory at the sad
in phase space. We mention that result~5! remains also valid
for the ‘‘flat saddle’’ in Fig. 1~b!, since atg→0 the particle
escapes ballistically, i.e., without backscattering in the reg
with constant potential.

Rates~3! and ~5! are the leading order results in 1/g and
g, respectively. The crossover between these limits is kno
as the Kramers turnover problem. Renewed attention to
problem followed Refs.@16,17# which investigated the lead
ing corrections to Eq.~5! and provided computational resul
illustrating the turnover. A particularly elegant approach
this problem was put forth in Refs.@12,18#, and indepen-
dently in Refs.@19,20# based on boundary layer theory. Lat
it was noticed that the problem can be solved over the en
turnover region by normal mode analysis@21#. We expect
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that for the flat saddle, the first correction term to Eq.~5! is
strongly changed as compared to the quadratic saddle
particular, there should be a strong dependence on the le
of the diffusion region. In the present work, however, w
consider the strongly damped case, or corrections to this
for finite but small 1/g. To find the corrections, we will use
a result of boundary layer theory.

III. ESCAPE ACROSS A FLAT POTENTIAL REGION

We again consider a symmetrical potential well. For d
creasingr ,j0 , the potential is assumed to drop strongly a
monotonously to its minimum value2E0 at r 50. For r
.j0, it is assumed to increase monotonously and to c
verge quickly to zero. Herej0 is a characteristic half-width
of the well defined by the specific physical problem und
consideration~see, e.g., Sec. IV!. A typical example is
sketched in Fig. 1~b!. As mentioned above, for the one
dimensional cased51, we assume reflection symmetry, an
in higher dimensions we assume a rotationally invariant
tential, which allows us to confine all calculations tor>0.
On a large length scaleL (@j0), we assume a periodic lat
tice of such wells. A two-dimensional sketch is shown
Fig. 1~c!. Since there is no activation barrier, we introduce
fictitious boundary which separates bound states and
states. We define the occurrence of a nucleation event a
escape of the particle from the regionr ,s. Initial recombi-
nation denotes recombination with the original well, wh
we define here homogeneous recombination as capture
neighboring well@Fig. 1~d!#. We emphasize that homoge
neous recombination and initial recombination differentia
histories of particles with separations larger thans. A homo-
geneous recombination event is thus represented by a tr
tory that starts froms and ends up at a different wel
whereas initial recombination is represented by a traject
that starts froms and after excursion in the flat potentia
region returns to the initial well. Initial recombination, lik
homogenous recombination, thus refers to particles that h
completely dissociated. The only difference is their differe
subsequent history due to diffusive motion.

In order to determine the nucleation rate, we consider fi
a single well. The bare potentialU(r ) does not exhibit a
saddle and the particle ‘‘feels’’ an attracting force whic
however, becomes~exponentially! small with increasing dis-
tance from the well. Once the particle is far enough away
behaves thus purely diffusive and must be considered to
free. As in standard nucleation theory, the solution of
Kramers problem must obey absorbing boundary conditi
outside the well. The introduction of the pointr 5s on the
flat region where these boundary conditions are applied
fines the size of a fictitious saddle separating the bound s
from the free states. The exact location of this point is n
determined due to local translational invariance in the reg
of constant potential. However, besides satisfyingL@s@j0,
it should be fixed by physical conditions. A typical examp
of an experimental condition which provides a certain va
of s is the finite resolution of an instrument which counts t
free particles@9#.

To calculate the nucleation rate, we solve the station
Smoluchowski equation~1! in radial coordinates. Due to ro
tational symmetry there is no dependence on angle coo
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nates ford.1. With an ansatzP(r )5b(r )exp@2U(r)/kT#
for the probability density, one finds, from Eq.~1! for the
radial current density ind dimensions,

j r52D exp@2U~r !/kT#] rb~r !5
C

r d21
. ~6!

HereC has to be determined, and is related to the nuclea
rate by Jnuc5adC with a152, a252p, and a354p. The
density is assumed to be normalized

E
0

s

P~r !adr d21dr51, ~7!

and to satisfy the linear, homogeneous, and mixed boun
conditions ats @22#:

xm] r Pus1Pus50. ~8!

Some comments concerning this boundary condition ar
order ~see, e.g., Ref.@3#!. First, xm5aAD/g is the Milne
length which is a measure for the nonequilibrium bound
layer at an absorbing boundary. Indeed,xm}AkT/m/g can
be interpreted as the mean free path of a particle with th
mal velocity. We mention that the first term in Eq.~8! can be
understood as a correction obtained from a Taylor expan
to first order with respect toxm . In one dimension,
a5z(2 1

2 )'1.46. In higher dimensions,a is changed~e.g.,
due to the finite curvature of the boundary!, but here we are
not interested in details concerning this problem, and we
usea as a given parameter. In the limitg→`, an absorbing
boundary ats implies P(s)50. On a microscopic length
scale, the boundary condition~8! describes the solution as
ymptotically far away from the absorbing boundar
r ,s2xm . The boundary layer itself (s2xm,r ,s) shows a
more complicated structure@22,23#. Hence Eq.~8! cannot be
used ifxm is of the order ofs, or if the boundary layer leaks
into the well. The mixed boundary condition~8! serves only
to investigate how the results presented below change a
depart from the regime of strongly damped motion; it sho
be clear that, for weak friction, it is not sufficient to consid
the Smoluchowski equation but instead one has rather to
the full Kramers equation.

Let us now continue with the derivation of the nucleati
rate. Integration of Eq.~6! together with Eqs.~7! and ~8!
yields

Jnuc5DF E
0

s

r d21dr e2U~r !/kTS xms12d

e2U~s!/kT

1E
r

s z12ddz

e2U~z!/kTD G21

. ~9!

Alternatively, we could derive this result by evaluating t
mean first passage time~see, e.g., Ref.@11#! of a particle
starting atr 50 and reachingr 5s, with appropriate bound-
ary conditions.

Despite rotational symmetry of the saddle manifold
d.1, the rate cannot be determined by using the volume
the symmetry group in the order-parameter (rW) space@24#.
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This works only for a saddle with a well-defined sharp ma
mum. We anticipate that the nucleation rate~9! depends in
general ons. The discussion of the dependence of the nuc
ation rate on this parameter is our main goal. In the seq
the high- and low-temperature limits will be discussed se
rately.

A. High-temperature limit

For very high temperatureskT@E0, the particle ‘‘sees’’
an overall flat potential and does not ‘‘feel’’ the well. From
Eq. ~9!, one finds a rate

Jnuc5
D

s2

2d

112~xm /s!
. ~10!

In the high-friction limit this describes just the spatial diffu
sion out of a regionr ,s. In the low-friction limit, on the
other hand, the rate isdD/(sxm)5AkT/m/sa. Although this
result cannot be exact as discussed above, let us compa
with an estimate of the zero-friction result obtained direc
from phase-space considerations. In the limitxm@s, the
probability density in phase space,f (r ,v), must be consid-
ered rather than the configuration space densityP(r ). For a
constant potential, we takef 5A exp(2mv2/2kT) for radial
velocities pointing away from the well, andf 50 for veloci-
ties pointing toward the well. In the following, we restric
ourselves to the one-dimensional case. The density in c
figuration space (r>0) and the current density ar
P5*dv f 5AApkT/2m and j 5*v dv f 5kTA/m, respec-
tively. Normalization implies P51/2s and we find
Jnuc52 j 5(A2/p)(AkT/m)/s. Up to a constant factor of or
der 1 this is in rather good agreement with the result deri
from Eq. ~10!.

Let us briefly determine the recombination timet1 in the
overdamped one-dimensional case. Due to equipartition
high temperatures, the ratio of free particles (r .s) to par-
ticles which are not free (r ,s) is given byNfree/Nwell5(L
2s)/s'L/s. Now the total nucleation rate and the recomb
nation rate balance each other,NwellJnuc5Nfree/t1. Using
Eq. ~10!, this immediately yields the recombination tim
t15Ls/2D. In Sec. III C, we will discuss the recombinatio
times more deeply.

We notice that in the high-temperature limit the assum
tion of a diluted gas of nucleated structures, i.e., the assu
tion L@j0, breaks down in many physical applications. Th
is becauseL2d is often a density of nucleated structur
which is itself proportional to an Arrhenius factor, and b
comes large at high temperatures. In that case, initial rec
bination and homogenous recombination can no longer
clearly separated.

B. Low-temperature limit

In this case, thed-dimensional probability density in the
well is a normalized@see Eq.~7!# equilibrium distribution

P0~r !5Adexp@2U~r !/kT#, ~11!

with the normalization constant
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Ad5S mv0
2

2pkTD d/2

exp~2E0 /kT!. ~12!

The low-temperature nucleation rate is given by

Jnuc5adAdDS E
j0

s

r 12ddr1xms12dD 21

, ~13!

wherej0 is the size of the well. It is interesting, that in on
space dimension (d51), result ~13! can be written in the
form

Jnuc5
A2p

a

xm

s2j01xm
JTST, ~14!

whereJTST is the transition state rate~4!. Note that despite of
the vanishing ofxm in the limit m→0, where the particle is
overdamped, the rate remains finite sinceJTST diverges. In
the overdamped limit and forj0!s, the rate is proportiona
to 1/s, and can be expressed in the form

Jnuc52
v0

gs
A kT

2pm
exp~2E0 /kT!. ~15!

Equation~15! and its dependence on 1/s can be understood
as follows. The probability that a particle reaches the
portion of the potential at a pointr (j0!r !s) is propor-
tional to the equilibrium probability distribution function a
this point. Since, according to our choice of the zero of
ergy, we have forr @j0 a potentialU[0, the equilibrium
probability distribution is just given by the prefactorA1 in
Eq. ~11! specified in Eq.~12!. Diffusion over a distances
along the flat potential region in a medium with diffusio
constantD5kT/mg reduces the probability byD/s. The
current at a distances is J5A1D/s. Since our potential is
symmetric aroundr 50, a current of the same magnitude
also obtained for r 52s. Thus the total current is
Jnuc52A1D/s, which is indeed just Eq.~15!. Thus the 1/s
dependence is a natural consequence of the flatness o
potential, and the fact that a particle can progress in
region only via diffusion. Equation~15! is the central result
of this work. According to Eq.~15!, the characteristic deca
time scales linearly withs. In Sec. IV, we show that the
equilibrium nucleation reate of kinks has the same dep
dence ons.

For weak dampingxm@s, we find thatJnuc deviates from
the transition state result only by a factor of 1.73. This~rela-
tively small! deviation is due to the above mentioned fa
that the inner structure of the boundary layer must be ta
into account and cannot be described simply by a bound
condition. One finds exactly the transition state result by
appropriate matching of the probability densi
P5AApkT/2m ~see the end of Sec. III A! to the part of
solution ~11! associated with right-moving particles (r .0).
Hence our result has a behavior similar to Krame
moderate-to-strong damping formula for the quadra
saddle. As mentioned, Eq.~11! is a wrong distribution at low
damping since local equilibrium in the well is not esta
lished, and the nucleation rate atg→0 is given by Eq.~5!.

In two and three space dimensions, the rates can be
pressed in the form
t

-

the
is

n-

t
n
ry
n

’
c

x-

Jnuc5
v0

2

g

exp~2E0 /kT!

ln~s/j0!1xm /s
~16!

and

Jnuc5
v0

2

g
A mv0

2

2pkT

2j0

12~j0 /s!1~j0xm /s2!
exp~2E0 /kT!,

~17!

respectively. In contrast to the one-dimensional case,
well sizej0 cannot be neglected ford.1. Moreover, in two
dimensions thes dependence is logarithmically weak, and
three dimensions its influence can be neglected. We men
that a discussion of the result in the limitj0→0 requires
some care, sincej0, v0, andE0 are usually not fully inde-
pendent.

Furthermore, ind52, and 3, neitherj0 nor s are neces-
sarily equal to the usual transition state obtained by extre
alization of the effective potentialkT ln@r12dexp(U/kT)#
5U(r)2kT(d21)ln(r). In contrast to the usual quadrat
saddle, it is not only the vicinity of this transition state whic
contributes to the integral in Eq.~9!. It is a larger region
around the transition state that counts, of whichj0 and s,
respectively, are the lower and the upper boundaries of i
gration.

C. Lifetime of free particles

We return now to the periodic lattice of the wells sketch
in Fig. 1~c!. Each well can then be associated with a unit c
of volume Vd5Ld much larger than the volume associat
with bound particles (}sd). At equilibrium and at low tem-
peratures,kT!E0, the ratio of particles in the well to free
particles is given byNwell /Nfree'1/VdAd . In steady state,
the generation rateNwellJnuc equals the recombination rat
Nfree/td . The lifetime of free particles is thus given by

td5
VdAd

Jnuc
. ~18!

For very strong damping and forj0!s, Eqs.~14!–~17! im-
ply

t15
Ls

2D
, ~19!

t25
L2

2pD
lnS s

j0
D , ~20!

t35
L3

4pDj0
. ~21!

In one dimension, the lifetime scales linearly withs, while
thes dependence in higher dimensions is weak or negligib
The higher the dimension, the smaller the probability
reaching the original well by pure diffusion. This is related
a divergence of the lifetimes asj0 vanishes. We also men
tion that Eq.~21! corresponds to the standard result in t
theory of diffusion controlled reactions, which states that
rate per volume is given by 4pDj0 ~see, e.g., Ref.@3#!.
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For the one-dimensional case, the lifetime can be ca
lated directly by solving the Smoluchowski equation~1! for a
flat potential, for absorbing boundary condition
P(0)5P(L)50, and for an injected currentj (s10)2 j (s
20)5 j nuc at r 5s. If P(r ) is normalized, the lifetime is then
given by 1/j nuc. One finds that recombination can be und
stood as a sum of two contributions, i.e., it hol
j nuc5 j s1 j h , wherej s

215Ls/2D is associated with Eq.~19!
and j h

215L(L2s)/2D is associated with diffusion to th
neighbor well.

Below, in the discussion of equilibrium kink nucleatio
we will first calculate the lifetime independently from th
nucleation rate and from equilibrium statistical mechani
Then using both results for the nucleation rate and the l
time, we will derive the equilibrium kink density and sho
agreement with the statistical mechanics result for the k
density.

D. Effect of a weak force

In this section we discuss the influence of an exter
weak forceF on nucleation in one dimension and at lo
temperature. The potentialU(r ) is now replaced by the new
potential U(r )2Fr . We are interested in the response
leading order with respect toF. The saddle is still flat enough
such that diffusion dominates the drift in the relevant regi
kT@Fs. For finite F, the current to the left (j 2) and to the
right ( j 1) are no longer equal, and the nucleation rate
Jnuc5 j 11 j 2 . Interestingly, as we will show below, th
transport currentJtrans is determined by the imbalance of th
forward nucleationj 1 and the backward nucleationj 2 . To
leading order inF, the transport current is thus given by

Jtrans5 j 12 j 2 . ~22!

The symmetry relationU(r )5U(2r ) implies j 1(F)5 j 2

(2F), andJnuc is an even function ofF while Jtransis an odd
function of F. We find

j 15D
Ã1F

kT
@12exp~2Fs/kT!#21, ~23!

where Ã1 is the normalization constant given by Eq.~12!
with a renormalized frequency and an energy of the n
minimum:

ṽ05v0A11
U ~4!

2m3v0
6

F2, ~24!

Ẽ05E0S 11
F2

2mv0
2E0

D . ~25!

In Eq. ~24!, we definedU (4)[] r
4Uu0. The nucleation curren

Jnuc and the total currentJtranscan then be written in the form

Jnuc5
FÃ1

mg
cothS Fs

2kTD , ~26!

Jtrans5
FÃ1

mg
, ~27!
u-

-

.
-

k

l

:

s

w

respectively. This yields a relation between the two curre
Jtrans5Jnuctanh(Fs/2kT). A similar result has been derived i
Ref. @6# for photogenerated currents. According to our a
sumptions, the results are valid in leading order with resp
to F. An expansion gives

Jtrans5
Fs

2kT
Jnuc. ~28!

Since the nucleation rate is proportional tos21, the total
current is independent ofs as it must be.

We now present two derivations to show that the transp
current Eq.~22! is indeed just determined by the imbalan
of the forward and backward nucleation rates. For weak d
ing forces the transport current is equal to the density of f
carriers,nfree, multiplied by their drift velocityu5mF,

Jtrans5unfree5mFnfree. ~29!

As usual, the mobility and the diffusion constant are rela
via the Einstein relationD5mkT. The number of free carri-
ers is determined by the balance of the generation of
particles and their recapture into a well,Jnuc5Nfree/t with
Nfree5Lnfree. HereJnuc determines the frequency with whic
free particles are generated, andNwell'1. The lifetime t
which determines the recapture back into the well is a fu
tion of F. But, to leading order inF, the equilibrium lifetime
Eq. ~19! is all we need. Eliminating the density of free ca
riers and using the Einstein relation, we fin
Jtrans5mFtJnuc/L5(Fs/2kT)Jnuc. This is in accordance
with Eq. ~28!, and thusJtrans5 j 12 j 2 holds.

A second derivation of this result proceeds as follows. W
still consider a periodic potential with periodL and which is
symmetric around the origin. It is sufficient to consider t
range 0<r ,L. We view the transport current as a cons
quence of the source currentsj 1 at r 5s and j 2 at
r 5L2s. The wells act as particle absorbers. The solution
this problem is a superposition of solutions to two proble
each with one source alone. The current which flows b
from r 5s in the presence of the sourcej 1 is denoted byj 1

L ,
and the current which flows forward to the next well byj 1

R .
Similarly, the sourcej 2 alone leads to a current back into th
well at r 5L denoted byj 2

R and a current into the well a
r 50 denoted byj 2

L . The transport current is then given b

Jtrans5 j 1
R 1 j 2

L . ~30!

Continuity of current requires

j 15 j 1
R 2 j 1

L , j 25 j 2
R 2 j 2

L . ~31!

As we have seen already the source currents have the
metry j 1(2F)5 j 2(F). The homogenous recombinatio
currents j 1

R and j 2
L are related by symmetry according

j 1
R (2F)52 j 2

L (F). On the other hand, the initial recomb
nation currents are even functions of the fie
j 1
L (2F)5 j 1

L (F) and j 1
R (2F)5 j 1

R (F) and, moreover, they
are equal in magnitude but differ in their sign,

j 1
L ~F !52 j 2

R ~F !. ~32!
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The initial recombination currents are maximal forF50.
With increasingF the recombination currentj 1

L decreases
because homogeneous recombination increases. Simi
the initial recombination currentj 2

R (F) decreases becaus
there are fewer carriers activated into the high energy reg
of the potential. Using Eqs.~30! and ~31! we obtain
Jtrans5 j 12 j 21 j 1

L (F)1 j 2
R (F). But as we have seen th

sum of the two initial recombination currents cancel one
other, and thusJtrans5 j 12 j 2 . Thus at low fields the differ-
ence of the two activation rates directly determines the tra
port current. This can also be shown by a direct calculat
The direct relationship of the ratesj 1 and j 2 to the transport
current demonstrates that these are physically meanin
and useful quantities.

IV. EQUILIBRIUM KINK NUCLEATION

In this section we investigate the dynamics of a string
particles coupled to each other harmonically, and moving
a sinusoidal potential. The particles are subject to damp
and noise, and might be subject to an external driving fo
This model is known as the driven and damped sine-Gor
chain. It has a long history and due to its wide range
applicability, from kinks in surface steps on various mate
als to the motion of fluxons in long Josephson junctions,
been widely studied@11,14,25–35#. In the overdamped limit,
which is of interest here, there are only two types of elem
tary excitations. There are small amplitude phononlike ex
tations and, more interestingly, highly nonlinear structur
called kinks or solitary structures, which describe the tran
tion from one valley to another. In chemical physics, kin
are discussed in various polymers@36#. Our concern is the
statistical mechanics of such a system, which we take to
so large that one can define a density of kinks and antikin
Of interest is a theory of the thermal equilibrium nucleati
of kink-antikink pairs, and particularly the role of initial re
combination@1#. We show that a theory of equilibrium kin
nucleation, i.e., for a vanishing external driving force,must
take into account initial recombination.

At small temperatures the kink-antikink gas is dilute
and the kink density sets an upper length scale over wh
nucleation and annihilation processes have to occur. In
framework of equilibrium statistical mechanics, kinks a
antikinks are regarded as free particles. Below we shall
plain that at equilibrium the distance between a ‘‘mathem
cally unbounded’’ kink-antikink pair is infinitely large. Ap
parently, this seems to contradict the notion of a free kink
a finite system. For reasons of consistency, it is thus ne
sary to develop a picture of the nucleation and annihilat
processes which permits essentially free diffusive mot
during the lifetime of a kink.

The nucleation, dynamics, and recombination of kin
and antikinks in space-time is schematically illustrated
Fig. 1 of Ref.@1#. Out of equilibrium, in the presence of
strong force~see Fig. 1~a! of Ref. @1#!, the kink and antikink
are driven apart after a nucleation process~empty triangles!
by the force, and eventually annihilate with an antikink an
kink originating from a different nucleation process~rect-
angles!. This picture has to be qualitatively modified in th
equilibrium case without force. As shown in Fig. 1~b! of Ref.
@1#, the diffusive motion of the free kinks gives them
rly,
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strongly enhanced probability of initial recombinatio
~closed loops!. Neglecting the closed trajectories is incons
tent with the experimental definition of free kinks. Form
works @7,34# ~see also Ref.@11#! do not include the initial
recombination processes and count only the negligibly sm
fraction of extended trajectories~see Fig. 1~b! of Ref. @1#!
which describe homogeneous recombination. Conseque
these works arrive at a much too low nucleation rate with
activation energy 3Ek associated with a kink triple, instea
of the pair energy 2Ek . Hence these works predict an incom
prehensible breaking of the kink-antikink symmetry. A fu
ther consequence is a mean kink lifetime proportional
exp(2Ek /kT) @7,34,35#, whereas our theory leads to a kin
lifetime proportional to exp(Ek /kT).

To be specific, let us consider now the overdamped s
Gordon equation@27#

g] tu52V0sin u1F1k]x
2u1z, ~33!

which describes the dynamics of an order-parameter fiel~a
string of particles! u(x,t) in a periodic potential of amplitude
V0, and with a coupling constantk. Unless otherwise stated
the force F is set to zero. We assume periodic bounda
conditionsu(L1x,t)5u(x,t), whereL is the sample length
which exceeds every other relevant length scale of the p
lem ~except the diverging size of the mathematical critic
nucleus!. Furthermore,z denotes a weak white noise forc
associated with the temperatureT, i.e., with zero mean

^z&50 and the correlation function ^z(x,t)z( x̃, t̃ )&
52gkTd(x2 x̃)d(t2 t̃ ). The uniform, stationary, and lin
early stable states are given byus,l52lp ~Peierls valleys!
with integer l, and have equal energies. There exists an
ergy functionalE@u#, such that Eq.~33! can be rewritten in
the form g] tu52dE@u#/du. For a weak finite force, two
adjacent Peierls valleys are separated in function space
saddle which corresponds to a kink-antikink pair. A kin
uk(x2x0) centered atx0 connects a Peierls valleyus,l with
its neighbor us,l 11. An antikink is reversely defined by
ua5uk(2x1x0). A kink-antikink pair at locationx0 and
with a ~not too small! separationr can be written approxi-
mately as uN(x)5uk(x2x01r /2)1uk(2x1x01r /2)
22p( l 11). In the presence of a weak forceF, the math-
ematically exact saddle point of the energy functional cor
sponds to a pair with a separationj5j0ln(V0 /F) where
j05Ak/V0 is now the kink size. In the equilibrium limit
whereF→0, the separationj exceeds the inverse kink den
sity n21 or even the system lengthL. In this case, the math
ematically exact critical nucleus has no physical meaning
order to overcome the problem of the large critical nucle
we introduce an effective critical nucleus with a separatios
of the kink and the antikink which is larger than a kink wid
but much smaller than an average equilibrium separatioL
[n21 of kinks. The effective critical nucleus corresponds
the flat barrier with sizes, in analogy to the effective saddl
discussed in the previous sections.

A. Nucleation rate

We derive now the kink nucleation rate per length,Jnuc.
Note that, due to the periodic array of Peierls valleys, kin
antikink and antikink-kink excitations are equivalent. If th
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nucleation rate of the former and the latter are denoted byj 1

and j 2 , respectively, the rate becomesJnuc5 j 11 j 2 . Of
course, at equilibrium it holdsj 15 j 2 . The presence of spa
tial degrees of freedom requires a multidimensional Kram
theory @24#. The relevant coordinate is the kink-antikin
separationr which can be associated with a quasi-Goldsto
mode, besides the usual translational Goldstone mode o
pair. The quasi-Goldstone mode isduN /dr 5uk8(x2x0

1r /2)/21uk8(2x1x01r /2)/2 associated with an infinites
mal variation ofr. The ~orthogonal! Goldstone mode assoc
ated with an infinitesimal displacementdx0 of the pair is
duN /dx05uk8(2x1x01s/2)2uk8(x2x01s/2).

The stationary Fokker–Planck equation associated w
the Langevin equation~33! is solved in a way analogous t
that in Sec. III@1#. Degrees of freedom which are transver
to the two Goldstone modes can be integrated out by Ga
ian integration@30#. The rate per length of a kink-antikin
pair then becomes@1#

j 15
1

L

Z̃N

Z̃s

*0
h1~L !dh1

*0
h0~s!dh0

exp~22Ek /kT!. ~34!

One concludes an activation energyE052Ek , where
Ek58AkV0 is the equilibrium kink energy@30#. The vari-
ables h0 and h1 are the orthonormal-mode coordinat
which belong to the kink-separation mode and to the tra
lational mode, respectively. It holds that

dh0
25dr2E ~duN /dr !2dx, dh1

25dx0
2E ~duN /dx0!2dx.

~35!

Using the quasi-Goldstone and the Goldstone modes g
above, one finds for the ratio of the integrals in Eq.~34! a
value 2L/s. The normalized partition function of the dampe
degrees of freedom at the saddle,

Z̃N

Z̃M

5
1

2p
Al0

Ml1
M )

n52

`
ln

M

ln
N

, ~36!

contains the stability eigenvaluesln
M ,N of the metastable

state~index M ) and the critical nucleus~index N) with re-
spect to perturbations with a decay~or a growth! }exp(lt).
The ~quasi-! zero modes are excluded in the products. Fo
well-separated pair, Eq.~36! is the renormalized partition
function of a kink-antikink pair without self-interaction, an
is given by the square of the single kink partition functio
Hence, Z̃N /Z̃M54G/2p, where G5V0 /g @30#. The kink
nucleation rate per length finally becomes

Jnuc52 j 152
4G

ps
exp~22Ek /kT!. ~37!

As discussed in Sec. III, the 1/s dependence is a consequen
of the strong dependence of the rate on initial recombina
events in one-dimensional systems.
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B. Lifetime of kinks

In the following, we show that the result~37! is consistent
with equilibrium statistical mechanics, which predicts
equilibrium kink density@30#

neq5A2V0Ek

pkkT
exp~2Ek /kT!. ~38!

In order to derive this result independently, we will calcula
first the kink lifetime t. By using the balance equatio
Jnuct5n, we obtain a kink density which has to be compar
with Eq. ~38!.

The kink lifetimet for a fixed antikink densityn can be
calculated with the help of a Langevin equation for the ki
separationr. This Langevin equation follows from a projec
tion of the sine-Gordon equation~33! onto the quasi-
Goldstone mode discussed above. The Fokker–Planck e
tion, which is equivalent to the Langevin equation, in t
stationary case reads] r(F̃P2D̃] r P)50. Here we assumed
finite forceF for later use. The effective force acting on th
separation coordinate is given byF̃52mF with a mobility
m52pk/gEk , and the diffusion constant is given b
D̃52mkT/2p @29,30#. The values ofF̃ and D̃ for the rela-
tive coordinater are twice as large as for a single kink. No
we return to the caseF50. The stationary Fokker-Planc
equation must be solved with a source atr 5s, and with
sinks atr 50 and r 5n21. The source describes the nucl
ation of a pair, and the sinks model kink-antikink annihil
tion. The mean kink distancen21 corresponds here to th
well distanceL introduced in Fig. 1~c! for one dimension.

Now we can proceed as in Sec. III C. Integration of t
stationary Fokker–Planck equation leads to a piecewise c
stant current density, whereas the source implies a disco
nuity of the current density of strengthj 1 at s. The absorbing
boundary conditions demandP(0)5P(n21)50. The life-
time t is defined by the ratio of the total probability*dsP
and the injected currentj 1 . One then finds immediately re
sult ~19! with L replaced by 1/n, i.e.,

t5
s

2D̃n
. ~39!

The balance equation, together with Eq.~37! immediately
implies the equilibrium density~38!, which proves consis-
tency with statistical mechanics, i.e.,n5neq.

As it must be, the stationary kink density~38! is indepen-
dent of the specific value ofs. Thes dependence of the rat
and of the lifetime can be illustrated in Fig. 1 of Ref.@1#. The
kinks which are to be counted in@0,L# at a fixed timet must
have been nucleated in a strip (t2t,t) of width t}s. Since
the number of counted kinks has to be independent ofs, the
density of generation events in this strip must be proportio
to 1/s. A variation ofs affects only kinetic quantities like the
time scale, but not thermodynamic equilibrium quantiti
like the kink density.

C. Effect of a weak force

In the presence of a weak forceF, we expect a drift in the
order-parameter fieldu. Kinks and antikinks which pass
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given location with average velocityu and2u, respectively,
each advance the field by 2p. Thus the average speed of th
order-parameter field is

^] tu&52pu~n1m!, ~40!

wherem andn are the average kink and antikink densities.
our problem it holdsn5m. To leading order in the fieldF,
the velocity is simply determined by the kink mobilit
u5mF, and the kink density is determined by the equili
rium density. Thus to linear order in the forceF the order
parameter has a velocity@30#

^] tu&54pmFneq. ~41!

We will rederive this result directly from the kink nucleatio
rates. As in the single-particle problem~28! of Sec. III D the
transport current can be directly related to the asymmetr
the kink nucleation rates. The kink nucleation rateJnuc is
balanced by kink recombinationJnuc5n/t. Here t is the
lifetime of kinks, which as we have seen is at low fiel
determined predominately by initial recombination and
F50 is given by Eq.~39!. Eliminating the kink density from
Eq. ~40!, we obtain^] tu&54putJnuc. Now we find that the
difference of the two nucleation currents is given by

j 12 j 25
F̃s

2D̃
Jnuc. ~42!

To leading order in the field, it follows immediately that th
average velocity of the displacement field is directly det
mined by the imbalance of the nucleation rates,

^] tu&5
2p

neq
~ j 12 j 2!. ~43!

This expression is equivalent to Eq.~41!.
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V. CONCLUSION

In this paper we have shown that diffusion controlled in
tial recombination strongly affects the activation rate
problems with flat potentials. The effect is particularly im
portant in one-dimensional systems where the probability
diffusion back to the original well is very large. The absen
of a well-defined barrier maximum requires the definition
an effective size of the barrier, i.e., a location where for
evaluation of the rate absorbing boundary conditions to
probability density are applied. In one-dimensional syste
the time and, as a consequence, the inverse rate, scale
early with this size.

Furthermore, we discussed equilibrium kink nucleation
an example where diffusion controlled initial recombinati
determines the kinetics. The effective saddle correspo
here to an effective critical nucleus. A certain arbitrariness
the nucleus size reflects the uncertainty of the notion o
free kink. A specific choice of this size, however, has to
related to physical considerations: obviously, it has to
larger than the kink width but much smaller than the me
kink distance. We have shown consistency of our res
with equilibrium statistical mechanics. Furthermore, we ha
shown that the activation rates directly determine the tra
port current. Our work not only demonstrates that rates
lifetimes are useful quantities even if they depend explic
on a length scale which separates free particles from bo
particles. It also demonstrates that an evaluation of such r
is necessary to provide a physically meaningful discussion
problems in which diffusion controlled initial recombinatio
plays a dominant role. Verification of the results presen
here through computational work is difficult due to the lo
simulation times involved in nucleation problems. On t
other hand, the many physical systems mentioned in the
troduction to Sec. IV, to which the sine-Gordon theory a
plies, would certainly provide opportunities for the expe
mental investigations of equilibrium kink nucleation. W
hope that the present work stimulates such experiments.
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